

Lenovo
Stamp

Lenovo
Text Box

 If a and b are relatively prime, then b has a multiplicative inverse

modulo a. That is, if gcd(a, b) = 1, then b has a multiplicative inverse modulo a.

 That is, for positive integer b < a, there exists a b - 1 < a such that bb - 1 = 1 mod a.

If a is a prime number and b < a, then clearly a and b are relatively prime and

have a greatest common divisor of 1.

 We now show that we can easily compute b - 1 using the extended Euclidean

algorithm.

 ax + by = d = gcd(a, b)

 Now, if gcd(a, b) = 1, then we have ax + by = 1. Using the basic equalities of

modular arithmetic, we can say

[(ax mod a) + (by mod a)] mod a = 1 mod a

0 + (by mod a) = 1

But if by mod a = 1, then y = b - 1. Thus, applying the extended Euclidean

algorithm to above Equation, it yields the value of the multiplicative inverse

of b if gcd(a, b) = 1.

 Consider the example. Here we have a = 1759, which is a prime number,

and b = 550. The solution of the equation 1759x + 550y = d yields a value

of y =355. Thus, b - 1 =355.

 More generally, the extended Euclidean algorithm can be used to find a multi-

plicative inverse in Z n for any n. If we apply the extended Euclidean algorithm

to the equation nx + by = d, and the algorithm yields d = 1, then y =

b -1 in Zn.

6.BLOCK CIPHER PRINCIPLES OF DES

A stream cipher is one that encrypts a digital data stream one bit or one byte

at a time. E.g, vigenere cipher. A block cipher is one in which a block of plaintext

is treated as a whole and used to produce a cipher text block of equal length.

Typically a block size of 64 or 128 bits is used.

Motivation for the Feistel Cipher Structure

 A block cipher operates on a plaintext block of n bits to produce a ciphertext

block of n bits.

 There are 2n possible different plaintext blocks and, for the encryption to

be reversible (i.e., for decryption to be possible), each must produce a unique

ciphertext block.

 Such a transformation is called reversible, or nonsingular. The following

examples illustrate nonsingular and singular transformations for n = 2.

Lenovo
Text Box

Lenovo
Stamp

Lenovo
Stamp

Lenovo
Stamp

Lenovo
Stamp

Lenovo
Text Box

The Feistel Cipher

 Feistel proposed that we can approximate the ideal block cipher by utilizing

the concept of a product cipher.

 In particular, Feistel proposed the use of a cipher that alternates substitutions

and permutations, where these terms are defined as follows:

Substitution: Each plaintext element or group of elements is uniquely replaced

by a corresponding cipher text element or group of elements.

Permutation: A sequence of plaintext elements is replaced by a permutation of that

sequence. That is, no elements are added or deleted or replaced in the sequence,

rather the order in which the elements appear in the sequence is changed.

Claude Shannon to develop a product cipher that alternates confusion and

diffusion functions

DIFFUSION AND CONFUSION

The terms diffusion and confusion were introduced by Claude Shannon to

capture shannon to capture the two basic building blocks for any cryptographic

system.

 Shannon’s concern was to prevent cryptanalysis based on statistical analysis .

Assume the attacker has some knowledge of the statistical characteristics of

 the plaintext.

 In diffusion, the statistical structure of the plaintext is degenerated into long-

range statistics of the ciphertext.

This is achieved by having each plaintext digit affect the value of many

ciphertext digits; generally, this is equivalent to having each ciphertext

digit be affected by many plaintext digits.

An example of diffusion is to encrypt a message M = m1, m2, m3, ... of

characters with an averaging operation:

adding k successive letters to get a ciphertext letter yn.

 confusion seeks to make the relationship between the statistics of the

ciphertext and the value of the encryption key as complex as possible, again to

prevent attempts to discover the key.

 Thus, even if the attacker can get some handle on the statistics of the

 ciphertext, the way in which the key was used to produce that ciphertext is so

 complex as to make it difficult to deduce the key. This is achieved by the use

 of a complex substitution algorithm.

FEISTEL CIPHER STRUCTURE

The Figure depicts the structure proposed by Feistel . The inputs to the

 encryption algorithm are a plaintext block of length 2w bits and a key K. The

plaintext block is divided into two halves, L0 and R0 .

The two halves of the data pass through n rounds of processing and then

combine to produce the ciphertext block. Each round i has as inputs L i – 1

 and Ri - 1 derived from the previous round, as well as a subkey Ki derived from

the overall K.

 In Figure, 16 rounds are used, although any number of rounds could be

 implemented. All rounds have the same structure. A substitution is performed

on the left half of the data.

This is done by applying a round function F to the right half of the data and

then taking the exclusive-OR of the output of that function and the left half of

the data.

 The round function has the same general structure for each round

but is parameterized by the round subkey Ki. Following this substitution, a

permutation is performed that consists of the interchange of the two halves

 of the data.

This structure is a particular form of the substitution-permutation network.

Feistel network depends on the choice of the following parameters and design

features:

Block size: Larger block sizes mean greater security but reduced

encryption/decryption speed for a given algorithm. The greater security

 is achieved by greater diffusion. A block size of 64 bits has been

considered . However, the new AES uses a 128-bit block size.

Key size: Larger key size means greater security but may decrease encryption/ decry

ption speed. The greater security is achieved by greater resistance to brute-

force attacks and greater confusion. Key sizes of 64 bits or less are now widely

considered to be insufficient, and 128 bits has become a common size.

Number of rounds: The essence of the Feistel cipher is that a single round offers

insufficient security but that multiple rounds offer increasing security. A typical

size is 16 rounds.

Subkey generation algorithm: Greater complexity in this algorithm should lead

to greater difficulty of cryptanalysis.

Round function F: Again, greater complexity generally means greater resistance

to cryptanalysis. There are two other considerations in the design of a Feistel

cipher:

Fast software encryption/decryption: In many cases, encryption is embedded in

applications or utility functions to prevent a hardware

implementation. Accordingly, the speed of execution of the algorithm becomes

a concern.

Ease of analysis: Although we would like to make our algorithm as difficult as

possible to cryptanalyze, there is great benefit in making the algorithm easy to

analyze. That is, if the algorithm can be concisely and clearly explained, it is

easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore

develop a higher level of assurance as to its strength.

FEISTEL DECRYPTION ALGORITHM

The process of decryption with a Feistel cipher is essentially the same as the en

cryption process. The rule isas follows: Use the ciphertext as input to the

algorithm, but use the subkeys Ki in reverse order. That is, use Kn in the first

round,

 Kn-1 in the second round, and so on, until K1 is used in the last round.

 Figure 3.3 shows the encryption process going down the left-hand side and the

decryption process going up the right-hand side for a 16-round algorithm.

 For clarity, we use the notation LEi and REi for data traveling through the

encryption algorithm and LDi and RDi for data traveling through the decryption

algorithm.

 The diagram indicates that, at every round, the intermediate value of the decrypt

ion process is equal to the corresponding value of the encryption process with

the two halves of the value swapped. let the output of the ith encryption

round be LEi ||REi . Then the corresponding input of the (16 – i)th decryption

 round is REi || LEi or, equivalently, LD 16 - i || RD16 - i .

 After the last iteration of the encryption process, the two halves of the

output are swapped, so that the ciphertext is RE16 ||LE16. The output of that round is

the ciphertext. Now take that ciphertext and use it as input to the

same algorithm.

 The input to the first round is RE16 || LE16, which is equal to the 32-bit swap of

the output of the sixteenth round of the encryption process.

Now we would like to show that the output of the first round of the decryption

process is equal to a 32bit swap of the input to the sixteenth round of the encryption

 process. Consider the encryption process.

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first

round of the decryption process is RE15 || LE15, which is the 32-bit swap of the

 input to the sixteenth round of the encryption. For the ith iteration of the

 encryption algorithm,

Finally, we see that the output of the last round of the decryption process is

RE0 || LE0. A 32-bit swap recovers the original plaintext, demonstrating the validity

of the Feistel decryption process.

 It can be shown that CTR is at least as secure as the other modes discussed

in this section.

• Simplicity:

 Unlike ECB and CBC modes, CTR mode requires only the implementation

 of the encryption algorithm and not the decryption algorithm.

 This matters most when the decryption algorithm differs substantially

from the encryption algorithm, as it does for AES. In addition, the

decryption key scheduling need not be implemented.

10. SIMPLIFIED DATA ENCRYPTION STANDARD (S-DES)

 The most widely used encryption scheme is based on the Data Encryption

Standard (DES) adopted in 1977 by the National Bureau of Standards, now the

National Institute of Standards and Technology (NIST). The algorithm itself is

referred to as the Data Encryption Algorithm (DEA).

 For DES, data are encrypted in 64-bit blocks using a 56-bit key. The algorithm

transforms 64-bit input in a series of steps into a 64-bit output.The same steps,

with the same key, are used to reverse the encryption.

DES Encryption

The overall scheme for DES encryption is illustrated in Figure 3.5. As with

any encryption scheme, there are two inputs to the encryption function: the

plaintext to be encrypted and the key. In this case, the plaintext must be 64 bits in

length and the key is 56 bits in length.

Lenovo
Text Box

Lenovo
Text Box

Lenovo
Text Box

 From the left-hand side of the figure, we can see that the processing of the

plaintext proceeds in three phases. First, the 64-bit plaintext passes through an

initial permutation (IP) that rearranges the bits to produce the permuted input.

 This is followed by sixteen rounds of the same function, which involves both

permutation and substitution functions. The output of the last (sixteenth) round

consists of 64 bits that are a function of the input plaintext and the key.

 The left and right halves of the output are swapped to produce the preoutput.

Finally, the preoutput is passed through a permutation that is the inverse of the

initial permutation function, to produce the 64-bit ciphertext.

 The right-hand portion of Figure 3.5 shows the way in which the 56-bit key is

used. Initially, the key is passed through a permutation function. Then, for

eachof the sixteen rounds, a subkey (Ki) is produced by the combination of a

left circular shift and a permutation.

 The permutation function is the same for each round, but a different subkey is

produced because of the repeated shifts of the key bits.

INITIAL PERMUTATION

 The initial permutation and its inverse are defined by tables, as shown in

Tables 3.2a and 3.2b, respectively. The input to a table consists of 64 bits

numbered from 1 to 64.The 64 entries in the permutation table contain a

permutation of the numbers from 1 to 64.

 Each entry in the permutation table indicates the position of a numbered input

bit in the output, which also consists of 64 bits. consider the following 64-bit

input M

If we then take the inverse permutation , it can

be seen that the original ordering of the bits is restored.

DETAILS OF SINGLE ROUND

The internal structure of a single round is shown in the figure. The left and

right halves of each 64-bit intermediate value are treated as separate 32-bit

quantities, labeled L (left) and R (right).

 As in any classic Feistel cipher, the overall processing at each round can be

summarized in the following formulas:

 The round key is 48 bits. The input is 32 bits. This input is first expanded to

48 bits by using a table that defines a permutation plus an expansion that involves

duplication of 16 of the bits (Table 3.2c).

 The resulting 48 bits are XORed with Ki . This 48-bit result passes through a

substitution function that produces a 32-bit output, which is permuted as in Table

3.2d.The role of the S-boxes in the function F is illustrated in Figure 3.7.

 The substitution consists of a set of eight S-boxes, each of which accepts 6

bits as input and produces 4 bits as output.

These transformations are defined in Table 3.3, which is interpreted as

follows:

 The first and last bits of the input to box form a 2-bit binary number to select

one of four substitutions defined by the four rows in the table for Si .

 The middle four bits select one of the sixteen columns. The decimal value in the

cell selected by the row and column is then converted to its 4-bit representation

to produce the output.

 For example, in S1, for input 011001, the row is 01 (row 1) and the column is

1100 (column 12).The value in row 1, column 12 is 9, so the output is 1001.

 Each row of an S-box defines a general reversible substitution.

 In the expansion table, you see that the 32 bits of input are split into groups of 4

bits and then become groups of 6 bits by taking the outer bits from the two

adjacent groups. For example, if part of the input word is

... efgh ijkl mnop ...

this becomes

... defghi hijklm lmnopq ...

The outer two bits of each group select one of four possible substitutions

(one row of an S-box). Then a 4-bit output value is substituted for the particular 4-

bit input (the middle four input bits). The 32-bit output from the eight S-boxes is

then permuted, so that on the next round, the output from each S-box immediately

affects as many others as possible.

KEY GENERATION

 From the Figures 3.5 and 3.6, we see that a 64-bit key is used as input to the

algorithm. The bits of the key are numbered from 1 through 64; every eighth

bit is ignored, as indicated in Table 3.4a.

 The key is first subjected to a permutation governed by a table labeled

Permuted Choice One (Table 3.4b).The resulting 56-bit key is then treated as

two 28-bit quantities, labeled C0 and D0 .

 At each round, Ci-1 and Di-1 are separately subjected to a circular left shift or

(rotation) of 1 or 2 bits. These shifted values serve as input to the next round.

011001

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as

encryption, except that the application of the sub keys is reversed.

DES Key Schedule Calculation

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in

either the plaintext or the key should produce a significant change in the ciphertext.

In particular, a change in one bit of the plaintext or one bit of the key should

produce a change in many bits of the ciphertext. This is referred to as the

avalanche effect.

11. THE STRENGTH OF DES

 Since it is accepted as a centralized standard, there have been slow concerns

about the level of security provided by DES. These concerns, fall into two

areas: key size and the nature of the algorithm.

 With a key length of 56 bits, there are 256 possible keys, which is

approximately 7.2 X 1016 keys. Thus, a brute-force attack appears.

 A single machine performing one DES encryption per microsecond would

take more than a thousand years to break the cipher.

 In 1977, Diffie and Hellman suggested that the technology existed to build a

parallel machine with 1 million encryption devices, each of which could

perform one encryption per microsecond.

 This would bring the average search time down to about 10 hours. The authors

estimated that the cost would be about $20 million in 1977 dollars.

 DES finally and definitively proved insecure in July 1998, when the

Electronic Frontier Foundation (EFF) announced that it had broken a DES

encryption using a special-purpose “DES cracker” machine that was built for

less than $250,000.

 The attack took less than three days. The EFF has published a detailed

description of the machine, enabling others to build their own cracker. And,

Lenovo
Text Box

Lenovo
Stamp

Lenovo
Text Box

Differential Propagation through Three Rounds of DES

Linear Cryptanalysis :
• It is the more recent development

• This attack is based on finding linear approximations to describe the transformations

performed in DES.

• This method can find a DES key given 243 known plaintexts, as compared to247 chosen

plaintexts for differential cryptanalysis. I

• t may be easier to acquire known plaintext rather than chosen plaintext, leaves.

• For a cipher with n -bit plaintext and ciphertext blocks and m -bit key, let the plaintext

block be labeled P[1], …P[n], the cipher text block C[1], .. C[n], and the key K[1], … ,

K[m] . Then define

A[i, j, … , k] = A[i] ꚛA[j] ꚛ.. ꚛA[k]

• The objective of linear cryptanalysis is to find an effective linear equation of the form:

P[α1,α2…..,αa] ꚛ C[β1,β2,….,βb] = K[γ1,γ2,……γc]

(where x = 0 or 1; 1 ≤ a;b ≤ n; c ≤ m ; and where the α,β,γ terms represent fixed, unique bit

locations) that holds with probability p≠0.5.

• The further p is from 0.5, the more effective the equation.

• Once a proposed relation is determined, the procedure is to compute the results of the

left-hand side of the preceding equation for a large number of plaintext–ciphertext pairs.

◦ If the result is 0 more than half the time, assume K[γ1,γ2,……γc]=0.

◦ If it is 1 most of the time, assume K[γ1,γ2,……γc]=1.

• This gives us a linear equation on the key bits.

Lenovo
Stamp

1

Lenovo
Stamp

Lenovo
Stamp

Lenovo
Stamp

2

Lenovo
Stamp

3. Cipher Feedback(CFB):
 It is assumed that the unit of transmission is bits; a common value is . As with

CBC, the units of plaintext are chained together, so that the ciphertext of any
plaintext unit is a function of all the preceding plaintext.

 In this case, rather than blocks of bits, the plaintext is divided into segments of
bits.

 The message is treated as a stream of bits that is added to the output of the block
cipher.

 The result is feedback for the next stage.

 Figure: s bit Cipher Feedback mode(CFB)

Encryption:
• The input to the encryption function is a b-bit shift register initially set to some

initialization vector (IV).
• The leftmost s bits of the output of the encryption function are XORed with the first

segment of plaintext P1 to produce the first unit of ciphertext C, which is then
transmitted.

• The contents of the shift register are shifted left by s bits, and C1 is placed in the
rightmost s bits of the shift register.

• This process continues until all plaintext units have been encrypted.

Decryption:
• The same scheme is used, except that the received ciphertext unit is XORed with the output of

the encryption function to produce the plaintext unit.

Let MSBs(X) be defined as the most significant bits of X. Then

Define CFB:

Advantages:
 Appropriate when data arrives in bits/bytes.
 It is the most common stream mode.

Disadvantages:
 The need to stall while you do block encryption after every n-bits.
 Note that the block cipher is used in encryption mode at both ends.
 Errors propagate for several blocks after the error.

4. Output Feedback Mode(OFB):
 It is similar in the structure of CFB.
 It is the output of the encryption function that is fed back to the shift register in OFB,

whereas in CFB, the ciphertext unit is fed back to the shift register.
 The difference is that the OFB mode operates on full blocks of plaintext and ciphertext,

not on an s-bit subset.

 OFB has the structure of a typical stream cipher, because the cipher generates a stream
of bits as a function of an initial value and a key, and that stream of bits is XORed with
the plaintext bits.

 The generated stream that is XORed with the plaintext is itself independent of the
plaintext

 Encryption can be expressed as

 D ecryption

Define OFB:

• The OFB mode requires an initialization vector.
• In the case of OFB, the IV must be a nonce;

◦ that is, the IV must be unique to each execution of the encryption operation.
• The reason for this is that the sequence of encryption output blocks, depends only on the

key and the IV and does not depend on the plaintext.
• Therefore, for a given key and IV, the stream of output bits used to XOR with the stream

of plaintext bits is fixed.
• If two different messages had an identical block of plaintext in the identical position,

then an attacker would be able to determine that portion of the stream.

Advantages:
 Bit errors in transmission do not propagated.

o Ex:
 If a bit error occurs in , only the recovered value of is affected;

subsequent plaintext units are not corrupted.
Disadvantages:

 More vulnerable to message stream modification attack.

5. Counter Mode(CTR):
 The counter equal to the plaintext block size is used.
 The counter value must be different for each plaintext block that is encrypted.
 The counter is initialize to some values, then will be incremented by one for each

subsequent block.(modulo 2b, b is block size)
Encryption:

 The counter is encrypted and XORed with the plaintext block to produce the ciphertext
block.

 There is no chaining.
Decryption:

 The same sequence of counter values is used, with each encrypted counter XORed with
the ciphertext block to recover the corresponding plaintext block.

 the initial counter value must be made available for decryption.

Define CTR:

• The initial counter value must be a nonce;
◦ that is, must be different for all of the messages encrypted using the same key.

• All values across all messages must be unique.
• a counter value is used multiple times, then the confidentiality of all of the plaintext

blocks corresponding to that counter value may be compromised
• To ensure the uniqueness of counter values is to continue to increment the counter value

by 1 across messages.
• That is, the first counter value of the each message is one more than the last counter

value of the preceding message.

Advantages:
 Hardware efficiency

o Encryption (or decryption) in CTR mode can be done in parallel on multiple
blocks of plaintext or ciphertext.

o The throughput is only limited by the amount of parallelism that is achieved.

 Software efficiency
o opportunities for parallel execution in CTR mode,
o processors that support parallel features, such as aggressive pipelining, multiple

instruction dispatch per clock cycle, a large number of registers, and SIMD
instructions, can be effectively utilized.

 Preprocessing
o preprocessing can be used to prepare the output of the encryption boxes that feed

into the XOR functions,
 Random access

o The th block of plaintext or ciphertext can be processed in random-access
fashion.

 Provable security
o CTR is at least as secure as the other modes

 Simplicity
o CTR mode requires only the implementation of the encryption algorithm and not

the decryption algorithm

Lenovo
Stamp

Lenovo
Stamp

Lenovo
Stamp

Lenovo
Stamp

Lenovo
Stamp

Lenovo
Stamp

Lenovo
Stamp

Lenovo
Stamp

• The input to the encryption and decryption algorithms is a single 128-bit block.
• This block is depicted as a square matrix of bytes.
• This block is copied into the State array, which is modified at each stage of

encryption or decryption.
• After the final stage, State is copied to an output matrix.

• Similarly, the key is depicted as a square matrix of bytes.
• This key is then expanded into an array of key schedule words.

• Each word is four bytes, and the total key schedule is 44 words for the 128-bit key.
• Note that the ordering of bytes within a matrix is by column.

◦ Example, the first four bytes of a 128-bit plaintext input to the encryption cipher
occupy the first column of the in matrix, the second four bytes occupy the second
column, and so on.

◦ Similarly, the first four bytes of the expanded key, which form a word, occupy
the first column of the w matrix.

Comments about the overall AES structure.
1. One noteworthy feature of this structure is that it is not a Feistel structure.

AES instead processes the entire data block as a single matrix during each round
using substitutions and permutation.
2. The key that is provided as input is expanded into an array of forty-four 32-bit words,
w[i]. Four distinct words (128 bits) serve as a round key for each round
3. Four different stages are used, one of permutation and three of substitution:
• Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block
• ShiftRows: A simple permutation
• MixColumns: A substitution that makes use of arithmetic over
• AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded
key
4. The structure is quite simple. For both encryption and decryption, the cipher begins with
an AddRoundKey stage, followed by nine rounds that each includes all four stages, followed
by a tenth round of three stages.

5. Only the AddRoundKey stage makes use of the key.
• For this reason, the cipher begins and ends with an AddRoundKey stage.
• Any other stage, applied at the beginning or end, is reversible without

knowledge of the key and so would add no security.
6. The AddRoundKey stage is a form of Vernam cipher and by itself would not be
formidable.

• The other three stages together provide confusion, diffusion, and nonlinearity, but by
themselves would provide no security because they do not use the key.We can view
the cipher as alternating operations of XOR encryption (AddRoundKey) of a block,
followed by scrambling of the block (the other three stages), followed by XOR
encryption, and so on.This scheme is both efficient and highly secure.

7. Each stage is easily reversible.
• For the Substitute Byte, ShiftRows, and MixColumns stages, an inverse function is

used in the decryption algorithm.
• For the AddRoundKey stage, the inverse is achieved by XORing the same round key

to the block, using the result that .
8. The decryption algorithm makes use of the expanded key in reverse order.

• However, the decryption algorithm is not identical to the encryption algorithm.
• This is a consequence of the particular structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify that decryption does
recover the plaintext.

• Encryption and decryption going in opposite vertical directions.

• At each horizontal point (e.g., the dashed line in the figure), State is the same for both
encryption and decryption.

10. The final round of both encryption and decryption consists of only three stages.
• Again, this is a consequence of the particular structure of AES and is required to

make the cipher reversible.

AES TRANSFORMATION FUNCTIONS
Four transformations used in AES. For each stage, we describe the forward (encryption)
algorithm, the inverse (decryption) algorithm, and the rationale for the stage.

1. Substitute Bytes Transformation
FORWARD AND INVERSE TRANSFORMATIONS
a) The forward substitute byte transformation, called SubBytes, is a simple table lookup.

• AES defines a matrix of byte values, called an S-box, that contains a permutation of
all possible 256 8-bit values.

• Each individual byte of State is mapped into a new byte in the following way:
◦ The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are

used as a column value.
◦ These row and column values serve as indexes into the S-box to select a unique

8-bit output value.
▪ Ex: The hexadecimal value3 {95} references row 9, column 5 of the S-box,

which contains the value {2A} . Accordingly, the value {95} is mapped into
the value {2A} .

Example of the SubBytes transformation:

Construction of S-Box:
1. Initialize the S-box with the byte values in ascending sequence row by row. The first row
contains {00}, {01}, {02}, ……, {0F} ; the second row contains {10}, {11}, etc.; and so on.
Thus, the value of the byte at row y , column x is {yx} .
 2. Map each byte in the S-box to its multiplicative inverse in the finite field GF(2)8 ; the
value {00} is mapped to itself.
 3. Consider that each byte in the S-box consists of 8 bits labelled (b7, b6, b5, b4, b3, b2, b1,
b0) . Apply the following transformation to each bit of each byte in the S-box:

where is the ith bit of byte c with the value {63} ; that is, (c7c6c5c4c3c2c1c0) =(01100011) .

• The prime(‘) indicates that the variable is to be updated by the value on the right.
• The AES standard depicts this transformation in matrix form as follows.

• Each element in the product matrix is the bitwise XOR of products of elements of

one row and one column.
• Furthermore, the final addition is a bitwise XOR.

◦ the bitwise XOR is addition in GF(28) .

Example, consider the input value{95}
• The multiplicative inverse in GF(28)is {95}-1 = {8A} , which is 10001010 in binary.

The result is {2A} , which should appear in row {09} column {05} of the S-box.
This is verified by checking Table

b) The inverse substitute byte transformation, called InvSubBytes, makes use of the
inverse S-box

Example, that the input {2A} produces the output {95} , and the input {95} to the S-box
produces {2A} .
The inverse S-box is constructed by applying the inverse of the transformation in Equation
followed by taking the multiplicative inverse in GF(28) .
The inverse transformation is

where byte d = {05} , or 00000101.

Transformation as follows.

• InvSubBytes is the inverse of SubBytes, label the matrices inSubBytes and
InvSubBytes as X and B, respectively, and the vector versions of constants c and d as
C and D, respectively.

• For some 8-bit vector B Equation (5.2) becomes B’ = XB C .
• Need to show that Y(XB C) D=B.
• To multiply out, we must show YXB YC D=B. This becomes

YX equals the identity matrix, and the YC=D ,so that YC D equals the null vector.

RATIONALE
• The S-box is designed to be resistant to known cryptanalytic attacks.
• The nonlinearity is due to the use of the multiplicative inverse.
• In addition, the constant in Equation was chosen so that the S-box has no fixed points

[S-box(a) = a] and no “opposite fixed points” [S-box(a) = a] , where a- is the bitwise
complement of a .

2. ShiftRows Transformation
FORWARD AND INVERSE TRANSFORMATIONS
a) The forward shift row transformation, called ShiftRows,

• The first row of State is not altered. For the second row, a 1-byte circular left shift is
performed. For the third row, a 2-byte circular left shift is performed.

• For the fourth row, a 3-byte circular left shift is performed.

• The following is an example of ShiftRows.

b) The inverse shift row transformation, called InvShiftRows,
• performs the circular hifts in the opposite direction for each of the last three rows,

with a 1-byte circular right shift for the second row, and so on.

RATIONALE
• The shift row transformation is more substantial than it may first appear.
• This is because the State, as well as the cipher input and output, is treated as an array

of four 4-byte columns.
• Thus, on encryption, the first 4 bytes of the plaintext are copied to the first column of

State, and so on.
• Furthermore, as will be seen, the round key is applied to State column by column.
• Thus, a row shift moves an individual byte from one column to another, which is a

linear distance of a multiple of 4 bytes.
• The transformation ensures that the 4 bytes of one column are spread out to four

different columns.

3. MixColumns Transformation
FORWARD AND INVERSE TRANSFORMATIONS
a) The forward mix column transformation, called MixColumns,

• operates on each column individually.
• Each byte of a column is mapped into a new value that is a function of all four bytes

in that column.
• The transformation can be defined by the following matrix multiplication on State

• Each element in the product matrix is the sum of products of elements of one row and
one column.

• In this case, the individual additions and multiplications are performed in GF(28).
• The MixColumns transformation on a single column of State can be expressed as

Example of MixColumns:

b) The inverse mix column transformation, called InvMixColumns, is defined by the
following matrix multiplication:

It is not immediately clear that Equation (5.5) is the inverse of Equation (5.3).
Need to show

which is equivalent to showing

• That is, the inverse transformation matrix times the forward transformation matrix
equals the identity matrix.

• To verify the first column of Equation (5.6), need to show
({0E}.{02}) {0B} {0D} ({09}.{03}) = {01}
({09}.{02}) {0E} {0B} ({0D}.{03}) = {00}
({0D}.{02}) {09} {0E} ({0B}.{03}) = {00}

({0B}.{02}) {0D} {09} ({0E}.{03}) = {00}

For the first equation,
{0E} .{02} = 00011100 and {09} .{03} = {09} ({09} .{02}) = 00001001 00010010 =
0001101

• The other equations can be similarly verified.
• The AES document describes another way of characterizing the MixColumns

transformation, which is in terms of polynomial arithmetic.
• In the standard, MixColumns is defined by considering each column of State to be a

four-term polynomial with coefficients in GF(28).
• Each column is multiplied modulo (x4+1) by the fixed polynomial a(x) , given by

RATIONALE
• The coefficients of the matrix in Equation (5.3) are based on a linear code with

maximal distance between code words, which ensures a good mixing among the
bytes of each column.

• The mix column transformation combined with the shift row transformation ensures
that after a few rounds all output bits depend on all input bits.

• In addition, the choice of coefficients in MixColumns, which are all {01},{02} or
{03}, was influenced by implementation considerations.

• Multiplication by these coefficients involves at most a shift and an XOR. The
coefficients in InvMixColumns are more formidable to implement.

4. Addroundkey Transformation:
FORWARD AND INVERSE TRANSFORMATIONS
a) In the forward add round key transformation, called AddRoundKey, the 128 bits of State
are bitwise XORed with the 128 bits of the round key.

• The operation is viewed as a columnwise operation between the 4 bytes of a State
column and one word of the round key; it can also be viewed as a byte-level
operation.

• Example of AddRoundKey:

• The first matrix is State, and the second matrix is the round key.

b) The inverse add round key transformation:
• Identical to the forward add round key transformation, because the XOR operation is

its own inverse.

RATIONALE :
• The add round key transformation is as simple as possible and affects every bit of

State.
• The complexity of the round key expansion, plus the complexity of the other stages

of AES, ensure security.

AES KEY EXPANSION
Key Expansion Algorithm

• The AES key expansion algorithm takes as input a four-word (16-byte) key and
produces a linear array of 44 words (176 bytes).

• This is sufficient to provide a four-word round key for the initial AddRoundKey
stage and each of the 10 rounds of the cipher.

• Pseudocode describes the expansion.

• The key is copied into the first four words of the expanded key.
• The remainder of the expanded key is filled in four words at a time.
• Each added word w[i] depends on the immediately preceding word, w[i-1] , and the

word four positions back , w[i-4], .
• In three out of four cases, a simple XOR is used.
• For a word whose position in the w array is a multiple of 4, a more complex function

is used.

The generation of the expanded key, using the symbol g to represent that complex function.

AES Key Expansion

The function g consists of the following subfunctions.
1. RotWord performs a one-byte circular left shift on a word.

• This means that an input word [B0, B1, B2, B3] is transformed into [B1, B2, B3,
B0] .

2. SubWord performs a byte substitution on each byte of its input word, using the S-box.
3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j] .

• The round constant is a word in which the three rightmost bytes are always 0.
• Thus, the effect of an XOR of a word with Rcon is to only perform an XOR on the

leftmost byte of the word.
• The round constant is different for each round and is defined as Rcon[j] = (RC[j], 0,

0, 0),with RC[1] = 1 RC[j] = 2 . RC[j-1] , and with multiplication defined over the
field GF(28).

The values of RC[j] in hexadecimal are

• Example, suppose that the round key for round 8 is
EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are calculated as follows:

Rationale
• The Rijndael developers designed the expansion key algorithm to be resistant to

known cryptanalytic attacks.
• The inclusion of a round-dependent round constant eliminates the symmetry, or

similarity, between the ways in which round keys are generated in different rounds.

Criteria:
• Knowledge of a part of the cipher key or round key does not enable calculation of

many other round-key bits.
• An invertible transformation [i.e., knowledge of any Nk consecutive words of the

expanded key enables regeneration the entire expanded key (Nk = key size in
words)].

• Speed on a wide range of processors.
• Usage of round constants to eliminate symmetries.
• Diffusion of cipher key differences into the round keys; that is, each key bit affects

many round key bits.
• Enough nonlinearity to prohibit the full determination of round key differences from

cipher key differences only.
• Simplicity of description.

Equivalent Inverse Cipher
• The AES decryption cipher is not identical to the encryption cipher.
• That is, the sequence of transformations for decryption differs from that for

encryption, although the form of the key schedules for encryption and decryption is
the same.

• This has the disadvantage that two separate software or firmware modules are needed
for applications that require both encryption and decryption.

• There is, however, an equivalent version of the decryption algorithm that has the
same structure as the encryption algorithm.

• The equivalent version has the same sequence of transformations as the encryption
algorithm (with transformations replaced by their inverses).

• To achieve this equivalence, a change in key schedule is needed.

• An encryption round has the structure SubBytes, ShiftRows, MixColumns,
AddRoundKey.

• The standard decryption round has the structure InvShiftRows, InvSubBytes,
AddRoundKey, InvMixColumns.

• Thus, the first two stages of the decryption round need to be interchanged, and the
second two stages of the decryption round need to be interchanged.

INTERCHANGING INVSHIFTROWS AND INVSUBBYTES
• InvShiftRows affects the sequence of bytes in State but does not alter byte contents

and does not depend on byte contents to perform its transformation.
• InvSubBytes affects the contents of bytes in State but does not alter byte sequence

and does not depend on byte sequence to perform its transformation.
• Thus, these two operations commute and can be interchanged.For a given State ,

InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)]

INTERCHANGING ADDROUNDKEY AND INVMIXCOLUMNS
• The transformations Add- RoundKey and InvMixColumns do not alter the sequence

of bytes in State.
• If we view the key as a sequence of words, then both AddRoundKey and

InvMixColumns operate on State one column at a time.
• These two operations are linear with respect to the column input.That is, for a given

State and a given round key ,

InvMixColumns (Si wj) = [InvMixColumns (Si)] [InvMixColumns (wj)]

• the first column of State Si is the sequence (y0, y1, y2, y3) and the first column of the
round key wj is (k0, k1, k2, k3) .

• Show

Demonstrate that for the first column entry.
Show

.

• can interchange AddRoundKey and InvMixColumns, provided that we first apply
InvMixColumns to the round key.

• Note that we do not need to apply InvMixColumns to the round key for the input to
the first AddRoundKey transformation (preceding the first round) nor to the last
AddRoundKey transformation (in round 10).

• This is because these two AddRoundKey transformations are not interchanged with
InvMixColumns to produce the equivalent decryption algorithm.

Implementation Aspects
For efficient implementation on 8-bit processors, typical for current smart cards, and on 32-
bit processors, typical for PCs.

8-BIT PROCESSOR
• AES can be implemented very efficiently on an 8-bit processor.
• AddRoundKey is a bytewise XOR operation.
• ShiftRows is a simple byte-shifting operation.
• SubBytes operates at the byte level and only requires a table of 256 bytes.

The transformation MixColumns requires matrix multiplication in the field
GF(28), which means that all operations are carried out on bytes. MixColumns only requires
multiplication by {02} and {03}, which, as we have seen, involved simple shifts, conditional
XORs, and XORs. This can be implemented in a more efficient way that eliminates the shifts
and conditional XORs. Equation set (5.4) shows the equations for the MixColumns
transformation on a single column. Using the identity {03}. x = ({02}. x) x, we can
rewrite Equation set (5.4) as follows.

Equation set (5.9) is verified by expanding and eliminating terms.

The multiplication by{02} involves a shift and a conditional XOR. Such an implementation
may be vulnerable to a timing attack of the sort .To counter this attack and to increase
processing efficiency at the cost of some storage, the multiplication can be replaced by a
table lookup. Define the 256-byte table X2, such that X2[i] = {02}.i .Then Equation set (5.9)
can be rewritten as

32-BIT PROCESSOR

The implementation described in the preceding subsection uses only 8-bit operations.
For a 32-bit processor, a more efficient implementation can be achieved if operations are
defined on 32-bit words. To show this, we first define the four transformations of a round in

algebraic form. Suppose we begin with a State matrix consisting of elements ai, j and a
round-key matrix consisting of elements ki, j .
Then the transformations can be expressed as follows.

In the ShiftRows equation, the column indices are taken mod 4. We can combine all of these
expressions into a single equation:

In the second equation, we are expressing the matrix multiplication as a linear combination
of vectors.
We define four 256-word (1024-byte) tables as follows.

Thus, each table takes as input a byte value and produces a column vector (a 32-bit word)
that is a function of the S-box entry for that byte value. These tables can be calculated in
advance.
We can define a round function operating on a column in the following fashion.

As a result, an implementation based on the preceding equation requires only four table
lookups and four XORs per column per round, plus 4 Kbytes to store the table.The
developers of Rijndael believe that this compact, efficient implementation was probably one
of the most important factors in the selection of Rijndael for AES.

Lenovo
Stamp

The RC4 Algorithm:
RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key size
stream cipher with byte-oriented operations.

 The algorithm is based on the use of a random permutation. Eight to sixteen machine
operations are required per output byte, and the cipher can be expected to run very quickly in
software.

 RC4 is used in the Secure Sockets Layer/Transport Layer Security (SSL/TLS) standards
that have been defined for communication between Web browsers and servers.

 It is also used in the Wired Equivalent Privacy (WEP) protocol and the newer WiFi Protected
Access (WPA) protocol. RC4 was kept as a trade secret by RSA Security.

 The RC4 algorithm is remarkably simple and quite easy to explain. A vari- able length
key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state vector S,
with elements S[0], S[1], Á , S[255].

 At all times, S contains a permutation of all 8-bit numbers from 0 through 255. For
encryption and decryption, a byte k (see Figure 7.5) is generated from S by selecting one of
the 255 entries in a systematic fashion.

 As each value of k is generated, the entries in S are once again permuted.

Initialization of S
• To begin, the entries of S are set equal to the values from 0 through 255 in ascending order;

that is, S[0] = 0, S[1] = 1, Á , S[255] = 255 .
• A temporary vector, T, is also created. If the length of the key K is 256 bytes, then T is

transferred to T.
• Otherwise, for a key of length keylen bytes, the first keylen elements of T are copied

from K, and then K is repeated as many times as necessary to fill out T. These preliminary
operations can be summarized as

•Next we use T to produce the initial permutation of S.
•This involves starting with S[0] and going through to S[255], and for each S[i], swapping S[i]
with another byte in S according to a scheme dictated by T[i]:

/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do

j = (j + S[i] + T[i]) mod 256;
Swap (S[i], S[j]);

• Because the only operation on S is a swap, the only effect is a permutation.
• S still contains all the numbers from 0 through 255.

Stream Generation
• Once the S vector is initialized, the input key is no longer used.

• Stream generation involves cycling through all the elements of S[i], and for each S[i],
swapping S[i] with another byte in S according to the current configuration of S.

• After S[255] is reached, the process continues, starting over again at S[0]:

/* Stream Generation */
i, j = 0;
while (true)

i = (i + 1) mod 256;
j = (j + S[i]) mod 256;
Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];

• To encrypt, XOR the value k with the next byte of plaintext.
• To decrypt, XOR the value k with the next byte of ciphertext.

RC4 logic

Strength of RC4
 The authors demonstrate that the WEP protocol, intended to provide confidentiality on 802.11

wireless LAN networks, is vulnerable to a particular attack approach.
 In essence, the problem is not with RC4 itself but the way in which keys are generated for

use as input to RC4.
 This particular problem does not appear to be relevant to other applications using RC4 and

can be remedied in WEP by changing the way in which keys are generated.

Lenovo
Stamp

 At a minimum, two levels keys are used . Communication between end systems

is encrypted using a temporary key, often referred to as a session key.

 Typically, the session key is used for the duration of a logical connection, such

as a frame relay connection or transport connection, and then discarded.

 Session keys are transmitted in encrypted form, using a master key that is

shared by the key distribution center and an end system or user.

A Key Distribution Scenario

 The key distribution concept can be deployed in a number of ways. A typical

scenario is illustrated in Figure 7.9. The scenario assumes that each user shares a

unique master key with the key distribution center (KDC).

Lenovo
Text Box

 Let us assume that user A wishes to establish a logical connection with B and

requires a one-time session key to protect the data transmitted over the

connection.

 A has a master key, Ka, known only to itself and the KDC; similarly, B shares

the master key Kb with the KDC. The following steps occur:

1. A issues a request to the KDC for a session key to protect a logical

connection to B. The message includes the identity of A and B and a unique

identifier, N1, for this transaction, which we refer to as a nonce.

 The nonce may be a timestamp, a counter, or a random number; the

minimum requirement is that it differs with each request.

 Also, to prevent masquerade, it should be difficult for an opponent to

guess the nonce. Thus, a random number is a good choice for a nonce.

 2. The KDC responds with a message encrypted using Ka Thus, A is the only one

who can successfully read the message, and A knows that it originated at the KDC.

The message includes two items intended for A:

● The one-time session key, Ks, to be used for the session

● The original request message, including the nonce, to enable A to match this

response with the appropriate request

Thus, A can verify that its original request was not altered before reception by the

KDC and, because of the nonce, that this is not a replay of some previous request.

In addition, the message includes two items intended for B:

 The one-time session key, Ks to be used for the session

 An identifier of A (e.g., its network address), IDA

These last two items are encrypted with Kb (the master key that the KDC shares

with B). They are to be sent to B to establish the connection and prove A's identity.

3. A stores the session key for use in the upcoming session and forwards to B the

information that originated at the KDC for B, namely, E(Kb, [Ks || IDA]). Because

this information is encrypted with Kb, it is protected from eavesdropping. B now

knows the session key (Ks), knows that the other party is A (from IDA), and knows

that the information originated at the KDC (because it is encrypted using Kb).

At this point, a session key has been securely delivered to A and B, and they

may begin their protected exchange.

4. Using the newly minted session key for encryption, B sends a nonce, N2, to A.

5. Also using Ks, A responds with f(N2), where f is a function that performs some

transformation on N2 (e.g., adding one).

These steps assure B that the original message it received (step 3) was not a replay.

Hierarchical Key Control

 It is not necessary to limit the key distribution function to a single KDC.

Indeed, for very large networks, it may not be practical to do so.

 As an alternative, a hierarchy of KDCs can be established. For example, there

can be local KDCs, each responsible for a small domain of the overall

internetwork, such as a single LAN or a single building. For communication

among entities within the same local domain, the local KDC is responsible for

key distribution. If two entities in different domains desire a shared key, then

the corresponding local KDCs can communicate through a global KDC.

 In this case, any one of the three KDCs involved can actually select the key.

The hierarchical concept can be extended to three or even more layers,

depending on the size of the user population and the geographic scope of the

internetwork.

Session Key Lifetime

 The more frequently session keys are exchanged, the more secure they are,

because the opponent has less ciphertext to work with for any given session

key.

 A security manager must try to balance these competing considerations in

determining the lifetime of a particular session key.

 For connection-oriented protocols, one obvious choice is to use the same

session key for the length of time that the connection is open, using a new

session key for each new session.

 If a logical connection has a very long lifetime, then it would be prudent to

change the session key periodically, perhaps every time the PDU (protocol data

unit) sequence number cycles.

 For a connectionless protocol, such as a transaction-oriented protocol, there is

no explicit connection initiation or termination. Thus, it is not obvious how

often one needs to change the session key.

 The most secure approach is to use a new session key for each exchange.

A Transparent Key Control Scheme

 The approach assumes that communication makes use of a connection-

oriented end-to-end protocol, such as TCP. The noteworthy element of this

approach is a session security module (SSM), that performs end-to-end

encryption and obtains session keys on behalf of its host or terminal.

Automatic Key Distribution for Connection-Oriented Protocol

 When one host wishes to set up a connection to another host, it transmits a

connection-request packet (step 1).

 The SSM saves that packet and applies to the KDC for permission to establish

the connection (step 2). The communication between the SSM and the KDC is

encrypted using a master key shared only by this SSM and the KDC.

 If the KDC approves the connection request, it generates the session key and

delivers it to the two appropriate SSMs, using a unique permanent key for each

SSM (step 3).

 The requesting SSM can now release the connection request packet, and a

connection is set up between the two end systems (step 4). All user data

exchanged between the two end systems are encrypted by their respective SSMs

using the one-time session key.

Decentralized Key Control

 A decentralized approach requires that each end system be able to communicate

in a secure manner with all potential partner end systems for purposes of session

key distribution.

 Thus, there may need to be as many as [n(n -1)]/2 master keys for a

configuration with n end systems. A session key may be established with the

following sequence of steps (Figure 7.11):

1. A issues a request to B for a session key and includes a nonce, N1

2. B responds with a message that is encrypted using the shared master key. The

response includes the session key selected by B, an identifier of B, the value f(N1),

and another nonce, N2.

3. Using the new session key, A returns f(N2) to B.

Figure 7.11. Decentralized Key Distribution

Thus, although each node must maintain at most (n- 1) master keys, as many

session keys as required may be generated and used. Because the messages

transferred using the master key are short, cryptanalysis is difficult.

Controlling Key Usage

 The concept of a key hierarchy and the use of automated key distribution

techniques greatly reduce the number of keys that must be manually managed

and distributed.

 different types of session keys such as

 Data-encrypting key, for general communication across a network

 PIN-encrypting key, for personal identification numbers (PINs) used in

electronic funds transfer and point-of-sale applications

 File-encrypting key, for encrypting files stored in publicly accessible

locations

 Normally, the master key is physically secured within the cryptographic

hardware of the key distribution center and of the end systems.

 Session keys encrypted with this master key are available to application

programs, as are the data encrypted with such session keys.

 The proposed technique is for use with DES and makes use of the extra 8 bits in

each 64-bit DES key.

 That is, the 8 nonkey bits ordinarily reserved for parity checking form the

key tag. The bits have the following interpretation:

 One bit indicates whether the key is a session key or a master key.

 One bit indicates whether the key can be used for encryption.

 One bit indicates whether the key can be used for decryption.

 The remaining bits are spares for future use.

 In this scheme, each session key has an associated control vector consisting of a

number of fields that specify the uses and restrictions for that session key.

 The length of the control vector may vary. The control vector is

cryptographically coupled with the key at the time of key generation at the KDC.

The coupling and decoupling processes are illustrated in Figure 7.12.

 As a first step, the control vector is passed through a hash function that

produces a value whose length is equal to the encryption key length.

Control Vector Encryption and Decryption

 The hash value is then XORed with the master key to produce an output that is

used as the key input for encrypting the session key. Thus,

Hash value = H = h(CV)

Key input = Km H

Ciphertext = E([Km H], K s)

where Km is the master key and Ks is the session key. The session key is recovered

in plaintext by the reverse operation:

D([Km H], E([Km H], Ks))

When a session key is delivered to a user from the KDC, it is accompanied by the

control vector in clear form.

 The session key can be recovered only by using both the master key that the user

shares with the KDC and the control vector. Thus, the linkage between the

session key and its control vector is maintained.

	Initialization of S
	Stream Generation
	Strength of RC4
	15 Key distribution.
	A Key Distribution Scenario
	Hierarchical Key Control
	Session Key Lifetime
	A Transparent Key Control Scheme
	Automatic Key Distribution for Connection-Oriented Protocol
	Decentralized Key Control
	Figure 7.11. Decentralized Key Distribution
	Controlling Key Usage
	Control Vector Encryption and Decryption

